$\langle \mathcal{P} \rangle$

PRODUCT SPECIFICATION

Doc. Number:

Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO: JJ070IA-18L SUFFIX:

Customer:

APPROVED BY

Name / Title

Note :

Please return 1 copy for your confirmation with your signature and comments.

Approved By	Checked By	Prepared By
HENRY.CHIEN HUAI.CHANG	KAY.LIU MEG.CHU	EDDY.CHANG

PRODUCT SPECIFICATION

REVISION HISTORY

Version	Date	Page	Description	
0.1	Jan,14,2019	All	Spec Ver0.1 was first issued	

 \oslash

PRODUCT SPECIFICATION

Contents

1.	General Specifications	1
2.	Pin Assignment	2
3.	Electrical Specifications	4
	 3.1 Absolute Maximum Rating 3.1.1 Typical Operation Conditions 3.1.2 Backlight Driving Conditions 3.2 Power Sequence 3.3 LVDS Input Timing 3.3.1 LVDS DC Interface Electrical Characteristics 3.3.2 LVDS Interface AC Electrical Characteristic 3.3.3 Data Input Format for LVDS 3.3.4 Reset timing 	4 5 7 9 10 11 13
4.	Optical Specifications	14
5.	Reliability Test Items	18
6.	General Precautions	19
	 6.1 Safety 6.2 Handling 6.3 Static Electricity 6.4 Storage 6.5 Cleaning 	19 19 19 19 19
7.	Mechanical Drawing	20
8.	Packing Drawing	21

PRODUCT SPECIFICATION

1. General Specifications

No.	Item	Specification	Remark
1	LCD Size	7 inch (Diagonal)	
2	Driver Element	a-Si TFT Active Matrix	0
3	Resolution	800 X 3(RGB) X 480	
4	Display Mode	Normally Black, Transmissive	
5	Dot Pitch	0.1905(W) x 0.1905(L) mm	
6	Active Area	152.4 mm(H) x 91.44 mm(V)	
7	Module Size	162.8(W) X 104.84(H) X 5.5(D) mm	Note 1-1
8	Bezel Opening Size	155.4(W) X 94.44(H) mm	
9	Surface Treatment	Anti-Glare	
10	Color Arrangement	RGB-Stripe	
11	Interface	LVDS (DE only)	Note 1-2
12	Backlight Power Consumption	3.224 W (Typ.)	
13	Panel Power Consumption	450 mW (Typ, @ White Pattern)	
14	Weight	195g ;+/- 5% (Max.)	

Note 1-1: Refer to Mechanical Drawing.

Note 1-2: LVDS, 8-bit, JEIDA format

 \oslash

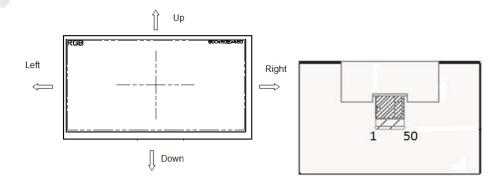
PRODUCT SPECIFICATION

2. Pin Assignment

Connector on PCB is used for the module electronics interface. The recommended model is IMSA-12003S-50A-GFN4 manufactured by IRISO.

JJ070IA-18E main FPCa golden finger pin define							
PIN NO.	Symbol	I/O/P	Function				
1	NTC_GND	Ρ	LED Driver for NTC Function, If not use please keep floating or connect to ground.				
2	LED1-	Р	Negative backlight voltage				
3	LED2-	Р	Negative backlight voltage				
4	NC		Keep floating				
5	LED+	Р	Positive backlight voltage				
6	NTC		LED Driver for NTC Function, If not use please keep floating or connect to ground.				
7	VDD	Р	Digital power(3.3V)				
8	VDD	Р	Digital power(3.3V)				
9	NC		Keep floating				
10	GND	Р	Ground				
11	GND	Р	Ground				
12	LV0N	Ι	LVDS data 0-				
13	LV0P	I	LVDS data 0+				
14	GND	Р	Ground				
15	LV1N	I	LVDS data 1-				
16	LV1P		LVDS data 1+				
17	GND	Р	Ground				
18	LV2N		LVDS data 2-				
19	LV2P		LVDS data 2+				
20	GND	Р	Ground				
21	LVCLKN	I	LVDS CLK-				
22	LVCLKP	I	LVDS CLK+				
23	GND	Р	Ground				
24	LV3N	I	LVDS data 3-				
25	LV3P	I	LVDS data 3+				
26	GND	Р	Ground				
27	SHLR	I	Horizontal scan direction(Normal pull high)				
28	RESET	Ι	Global reset pin				
29	STBYB	I	Standby mode				
30	UPDN	I	Vertical scan direction(Normal pull high)				
31	GND	Р	Ground				

2



PRODUCT SPECIFICATION

32	NC		Keep floating
33	GND	Р	Ground
34	NC		Keep floating
35	GND	Р	Ground
36	VDD	Р	Digital power(3.3V)
37	NC		Keep floating
38	VDDA	Р	VDDA(13.3V)
39	VDDA	Р	VDDA(13.3V)
40	NC		Keep floating
41	NC		Keep floating
42	NC		Keep floating
43	VGH	Р	VGH(26V)
44	NC		Keep floating
45	VGL	Р	VGL(-7.0V)
46	NC		Keep floating
47	VDD	Р	Digital power(3.3V)
48	VDD	Р	Digital power(3.3V)
49	NC		Keep floating
50	GND	Р	Ground

SHLR	UPDN	Data shifting
VDD	VDD	Left→Right [,] UP→Down(default)
VDD	GND	Left→Right [,] Down→UP
GND	VDD	Right→Left,UP→Down
GND	GND	Right→Left [,] Down→UP

Refer to the figure as below:

PRODUCT SPECIFICATION

3. Electrical Specifications

3.1 Absolute Maximum Rating

	(GNE	0=0V, Note 3-1)			
ltem	Symbol	Val	ues	Unit	Remark
nem	Symbol	Min.	Max.	Onit	Remark
Power Voltage	VDD	-0.3	4.5	V	Note 3-1
Power Voltage	VDDA	-0.3	14.25	V	Note 3-1
Power Voltage	VGH	-0.3	VGL+40	V	Note 3-1
Power Voltage	VGL	-20	+0.3	V	Note 3-1
Operation Temperature	Τ _{ΟΡ}	Ta = -30	Tp = 85	°C	Note 3-1,2
Storage Temperature	Τ _{ST}	Ta = -40	Ta = 90	°C	Note 3-1,2
LED Reverse Voltage	VR	-	1.2	V	Each LED
LED Forward Current	IF		150	mA	Each LED

Note 3-1 : The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Note 3-2 : Ta = Ambient Temperature, Tp = Panel Surface Temperature.

 $\langle P \rangle$

PRODUCT SPECIFICATION

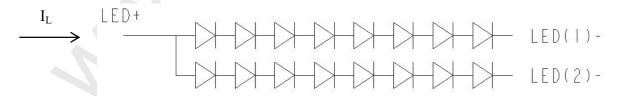
3.1.1 Typical Operation Conditions

					Ta=2	25°C 丶 (GND =0V)
item	Symbol	Min.	Тур.	Max.	Unit.	Note.
Digital Supply Voltage	VDD	3	3.3	3.6	V	Note 3-3 Note 3-4
Analog Supply Voltage	VDDA	13.2	13.3	13.5	V	Note 3-3 Note 3-5
Gate On Voltage	VGH	25.5	26	26.5	V	Note 3-3
Gate Off Voltage	VGL	-7.5	-7	-6.5	V	Note 3-3
Logio Input Voltago	VIH	0.7VDD	-	VDD	V	Note 3-6
Logic Input Voltage	VIL	GND	-	0.3VDD	V	

Note 3-3: VDD VDDA VGH VGL setting should match the signals output voltage of customer's system board.

Note 3-4: The ripple voltage should be controlled under 5%.

Note 3-5: The ripple voltage should be controlled under 1%.


Note 3-6: SHLR, RESET, STBYB, UPDN.

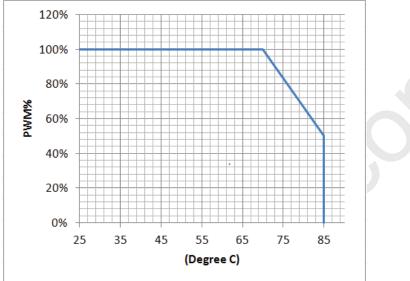
3.1.2 Backlight Driving Conditions

Item	Symbol		Unit	Remark		
nem	Symbol	Min.	Тур.	Max.	Unit	Remark
Voltage for LED Backlight	VL	22.4	24.8	26.4	V	Note 3-7
Current for LED Backlight	L		130		mA	(2P8S)
LED Life Time	0	20000			Hr	Note 3-8

Note 3-7: The LED Supply Voltage is defined by the number of LED at Ta=25 $^{\circ}$ C and I_F =150mA.

Note 3-8: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and I_L = 130mA. The LED lifetime could be decreased if operating I_L is lager than 130mA.

 $\langle p \rangle$

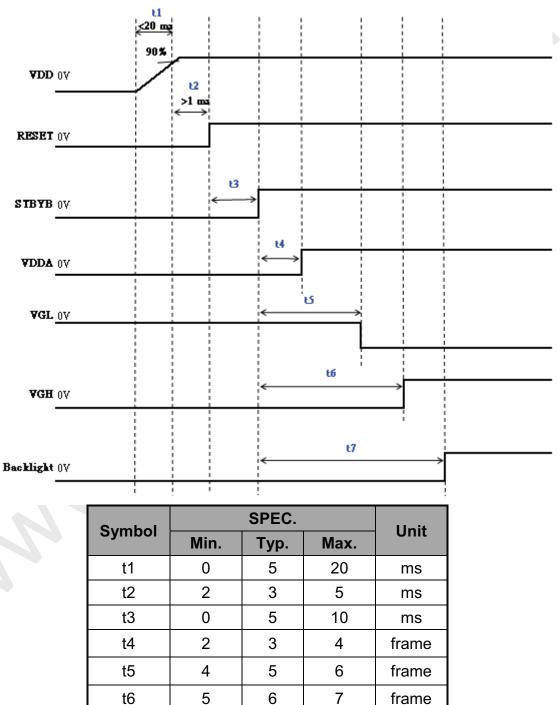


PRODUCT SPECIFICATION

3.1.3 PWM.

The LED string has a NTC(Negative Temperature Coefficient) to detect the ambient temperature of LED string.

LED power de-rating has to start at 70°C linear dow n to PWM 50% at 85°C before switching off, see graph as below.



PRODUCT SPECIFICATION

3.2 Power Sequence

The recommended power on sequence should be: Digital power(VDD) \rightarrow RESET \rightarrow STBYB \rightarrow VDDA \rightarrow VGL \rightarrow VGH \rightarrow Backlight .To power off sequence should be: Backlight \rightarrow STBYB \rightarrow VGL & VGH \rightarrow VDDA \rightarrow VDD & RESET.

Power on sequence:

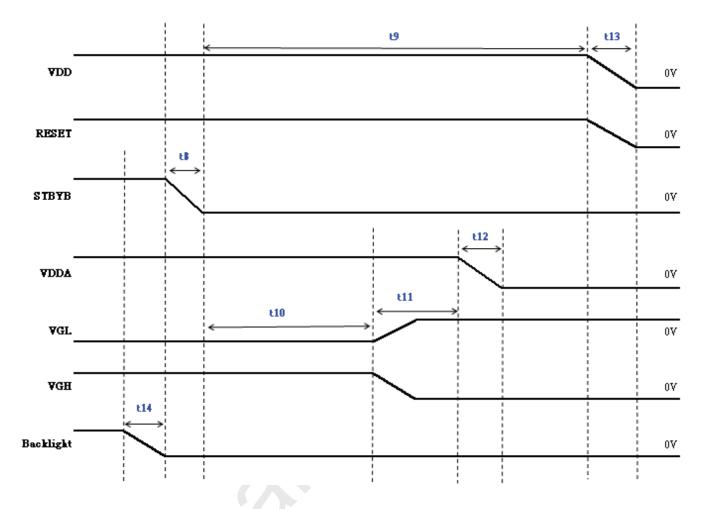
(1 frame = 60 Hz)

frame

12

11

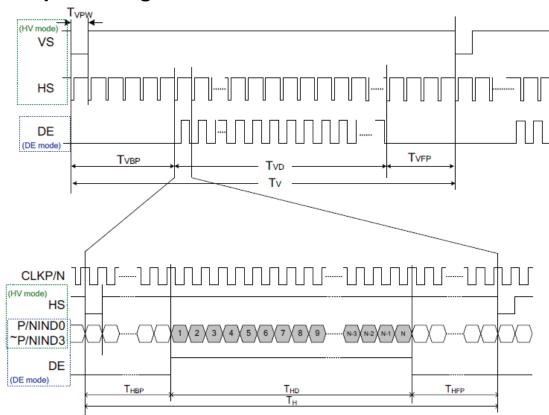
10


t7

 \oslash

PRODUCT SPECIFICATION

Power off sequence:


Symbol		Unit						
Symbol	Min.	Тур.	Max.	Unit				
t8	0	2	5	ms				
t9	9	10	11	frame				
t10	6	7	8	frame				
t11	1	2	3	frame				
t12	0	2	5	ms				
t13	0	2	5	ms				
t14	0	10	20	ms				
	(1frame = 60Hz)							

INNO

PRODUCT SPECIFICATION

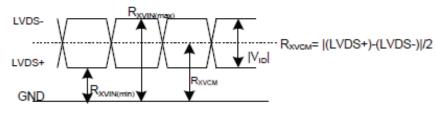
3.3 LVDS Input Timing

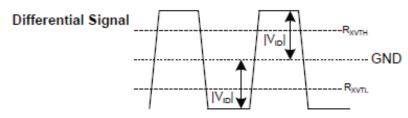
Note: $T_V=T_{VBP}+T_{VD}+T_{VFP}$ $T_H=T_{HBP}+T_{HD}+T_{HFP}$

Figure. LVDS Input Timing

DE mode for 800x480

Parameter	Symbol	Min.	Тур.	Max.	Unit
CLK frequency	F _{CLK}	25.2	25.4	35.7	MHz
Horizontal display area	T _{HD}		800	•	CLK
HS period time	Т _Н	860	864	974	CLK
HS blanking	T _{HFP} + T _{HBP}	60	64	174	CLK
Vertical display area	T _{VD}		480		Н
VS period time	T _V	488	490	611	Н
VS blanking	T _{VBP} + T _{VFP}	8	10	131	Н




PRODUCT SPECIFICATION

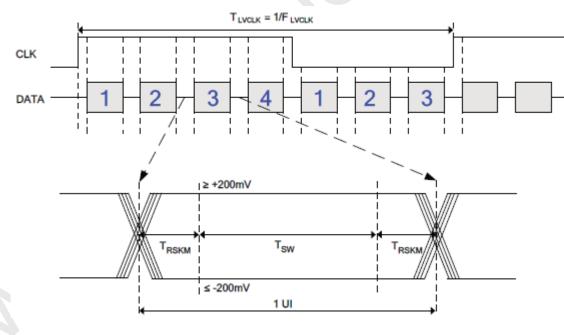
3.3.1 LVDS DC Interface Electrical Characteristics

(VDD_IF=VDD= 2.7V to 3.6V, VDDA= 8V to 13.5V, GND_IF=GND=GNDA= 0V, T _J = -40°C to +105°C)							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Differential input high threshold voltage	R _{XVTH}	+0.1	-	-	V	D -1 2)/	
Differential input low threshold voltage	R _{XVTL}	-	-	-0.1	V	R _{XVCM} =1.2V	
Input voltage range (singled-end)	R _{XVIN}	0.7	-	1.7	V		
Differential input common Mode voltage	R _{XVCM}	1	1.2	1.4	V		
Differential input voltage	V _{ID}	0.2	-	0.6	V		
Terminal resistor	R _{term}	250	300	350	Ω	T」=+25℃, RTERM[2:0]=HHH	
Differential input leakage current	ILLVDS	-10	-	+10	uA	T _J =+25°C, VDD_IF=3.3V, CLKP/N, DxP/N	
LVDS Digital Stand-by Current	I _{stlvds}	-	-	100	uA	T_J =+25°C, VDD_IF=3.3V, Input Pin V _{IH} =3.3V, V _{IL} =0V, Clock & all functions are stopped, STBYB = L	
LVDS Digital Operating Current	I _{VDDLVDS}	-	-	60	mA	$T_J =+25^{\circ}C$, VDD_IF=3.3V, Input Pin V _{IH} =3.3V, V _{IL} =0V, $F_{CLK} = 85MHz$, Input pattern: 55h->AAh->55h->AAh	

Single-end Signal

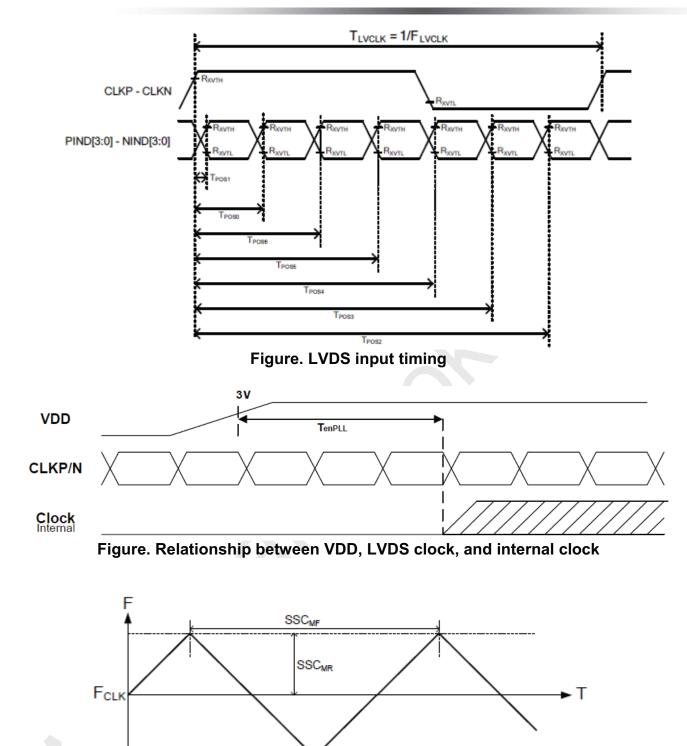
- * Differential input voltage swing =VID
- * |(LVDS+)-(LVDS-)| = |V_{ID}|
- * |(LVDS+)-(LVDS-)|= |V_{ID}| > R_{XVTH} =" H"
- * |(LVDS+)-(LVDS-)|=-|VID| < RXVTL =" L"

Figure. LVDS DC Diagram


 \oslash

PRODUCT SPECIFICATION

3.3.2 LVDS Interface AC Electrical Characteristic

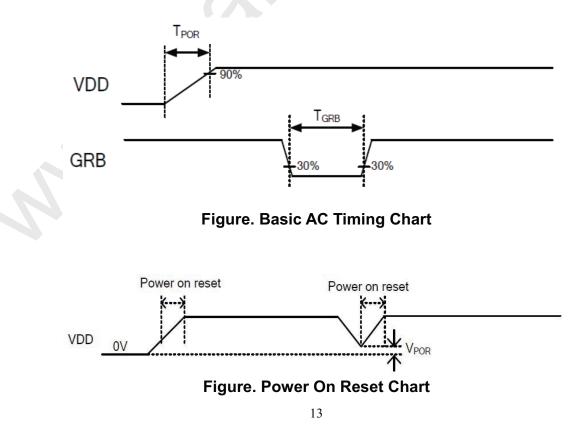

(VDD_IF=VDD= 2.7V to 3.6V, VDDA= 8V to 13.5V, GND_IF=GND=GNDA= 0V, T_J= -40°C to +105°C)							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition	
Clock frequency	FLVCLK	20	-	85	MHz	Refer to input timing table	
Clock Period	TLVCLK	50	-	11.76	nsec	for each display resolution.	
Clock high time	TLVCH	-	4/(7* R _{XFCLK})	-	ns		
Clock low time	TLVCL	-	3/(7* R _{XFCLK})	-	ns		
Input data skew margin	T _{RSKM}	-	-	0.2	UI	V _{ID} = 200mV, R _{XVCM} = 1.2V	
Strobe width	T _{SW}	0.6	-	-	UI	F _{LVCLK} = 85MHz	
1 data bit time	UI	-	1/7	-	TLVCLK		
Position 1	T _{POS1}	-0.2	0	0.2	UI		
Position 0	T _{POS0}	0.8	1	1.2	UI		
Position 6	T _{POS6}	1.8	2	2.2	UI		
Position 5	T _{POS5}	2.8	3	3.2	UI		
Position 4	T _{POS4}	3.8	4	4.2	UI		
Position 3	T _{POS3}	4.8	5	5.2	UI		
Position 2	T _{POS2}	5.8	6	6.2	UI		
PLL wake-up time	T _{enPLL}	-	-	150	US		
SSC Modulation Frequency	SSCMF	23	-	93	KHz		
SSC Modulation Rate	SSCMR	-3	-	+3	%	FLVCLK =81MHz, Center spread	

 $\langle \! \! \rangle$

PRODUCT SPECIFICATION

PRODUCT SPECIFICATION

3.3.3 Data Input Format for LVDS


LVDS, 8-bit, JEIDA format

3.3.4 Reset timing

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
VDD power source slew time	T _{POR}	-	-	20	ms	From 0V to 90% VDD
GRB active pulse width	T _{GRB}	1	-	-	ms	VDD = 3.3V
Power on reset voltage	V _{POR}	0	-	100	mV	

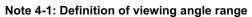
PRODUCT SPECIFICATION

4. Optical Specifications

14	O make a l	0		Values		11	Remark
ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	
Viewing Angle	θ_{L}	Φ=180 (9 o'clock)	70	80	-		Note 4-1
	θ_{R}	Φ=0°(3 o'clock)	70	80	-	degree	
(CR≥10)	θτ	Φ=90 (12 o'clock)	70	80	-		
	θ_{B}	Φ=270 (6 o'clock)	70	80	-		
Response Time	T _{ON}		-	15	20	msec	Note 4-3
	T _{OFF}		-	10	15	msec	11016 4-3
Contrast Ratio	CR		800	1000	-	-	Note 4-4
Flicker			-		-20	dB	Note 4-7
Color Chromaticity	W _x	Normal	0.270	0.310	0.350	-	Note 4-2 Note 4-5
	W _Y	θ=Φ=0°	0.290	0.330	0.370	-	
NTSC(CIE 1931)			60	70	-	%	Note 4-2 Note 4-5
Gamma	Y	0	1.9	2.2	2.5		Note 4-2
Luminance (Center)	L	P	600	750	-	cd/m²	Note 4-2 Note 4-5
Luminance Uniformity	YU		70	-	-	%	Note 4-2 Note 4-6

Test Conditions:

1. VDD=3.3V, VDDA=13.3V, VGH=26V, VGL=-7.0V, IL= 130mA (Backlight current), the ambient temperature is 25℃


2. The test systems refer to Note 4-2.

Global I CD Panel Exchange Center

群創光電

PRODUCT SPECIFICATION

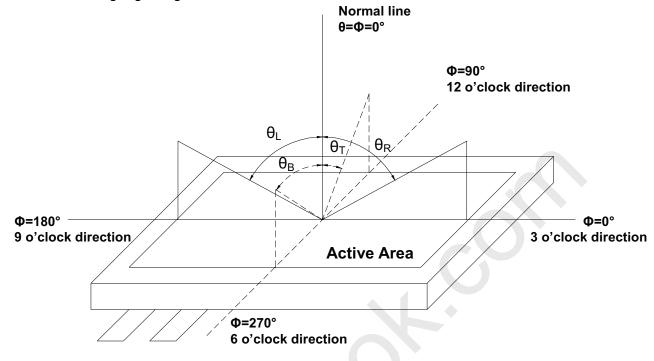
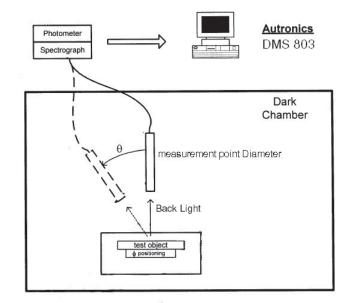
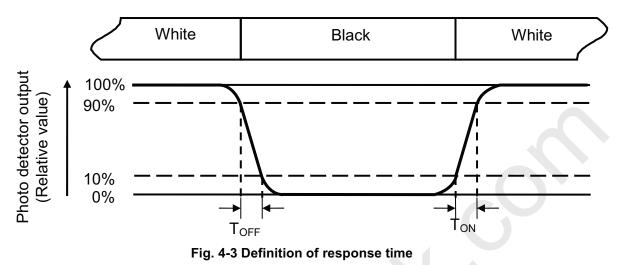


Fig. 4-1 Definition of viewing angle

Note 4-2: Definition of optical measurement system.

The backlight has been light on for 10 minutes then measured the optical properties at the center point of the LCD screen in dark room.




Fig. 4-2 Optical measurement system setup

PRODUCT SPECIFICATION

Note 4-3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 10% to 90%. And fall time (TOFF) is the time between photo detector output intensity changed from 90% to 10%.

Note 4-4: Definition of contrast ratio

Contrast ratio (CR) =
$$\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$$

Note 4-5: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED BLU driving condition is I_L = 130 mA.

Note 4-6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (Yu) =
$$\frac{B_{min}}{B_{max}}$$

L-----Active area length W----- Active area width

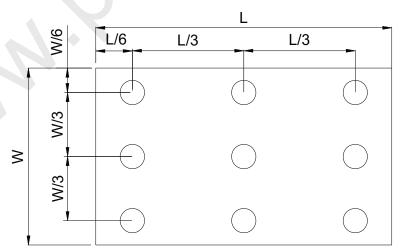


Fig. 4-4 Definition of measuring points

B_{max}: The measured maximum luminance of all measurement position.
 B_{min}: The measured minimum luminance of all measurement position.

PRODUCT SPECIFICATION

Note 4-7: Definition of flicker.

群創光電

The flicker is measured by JEITA method after module turn-on 120 seconds, under grayscale 128 flicker pattern (Fig. 4-5) at the center point of the LCD screen by CA-210. The luminance signal is processed by FFT analyzer (Fast Fourier Transform Analyzer), and is displayed in a form of energy distribution of frequency components (Fig. 4-6). As shown in Fig. 4-6, when two or more frequency components (P0, Px1, Px2) exist, the maximum value among all the frequency components (Px1, Px2 in the case of Fig. 4-6) except for P0, that is the component of frequency 0, will be set as Px.

Flicker Amount = $10 \times \log\left(\frac{P_x}{P_0}\right) [dB]$

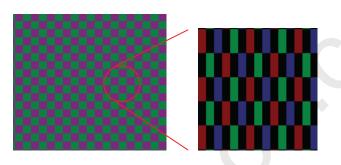


Fig. 4-5 Flicker pattern of dot inversion

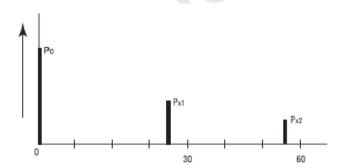


Fig. 4-6 Energy distribution of frequency components by FFT

NNOLUX 群創光電

PRODUCT SPECIFICATION

5. Reliability Test Items

ltem	Test Conditions	Remark
High Temperature Storage Test	Ta=90°C, 500 hours	
Low Temperature Storage Test	Ta=-40°C, 500 hours	Note 5-1 Note 5-2 Note 5-4
High Temperature Operation Test	Tp=85°C, 500 hours	
Low Temperature Operation Test	Ta=-30°C, 500 hours	Ta: Ambient Temperature
High Temperature & High Humidity Operation Test	Ta=60°C, RH 90%, 500hours	Tp: Panel Surface Temperature
Thermal Shock	(-40°C 30min)→(85°C 30min)]/cycle,100 cycles	
ESD Test	Condition 1 : C = 150pF, R = 330Ω Contact Discharge, ± 8KV Condition 2 : C = 150pF, R = 330Ω , Air Discharge, ± 15KV	Note 5-1
Mechanical Shock	100G, 6ms, half sine wave, 3 times for each direction of $\pm X$, $\pm Y$, $\pm Z$	Note 5-1 Note 5-3
Mechanical Vibration	Duration: 8 hrs (X-Axis), 8 hrs (Y-Axis), 8 hrs (Z-Axis) Effective Acceleration = 19.6 m/s2 = 2.0 GRMS	Note 5-1 Note 5-3
Packaging Vibration Test	1.14Grms [spectrum : 1Hz,4Hz,100Hz, 200Hz] Bottom : 30min/Axis Right-Left & Front-Back : 15min/Axis.	
Packaging Drop Test	1corner, 3edges, 6faces (1 time/direction) <follow height="" ista(1a)=""> $0kg \leq W <10kg : 76cm$, $10kg \leq W <19kg : 61cm$, $19kg \leq W <28kg : 46cm$, $28kg \leq W <45kg : 31cm$, $45kg \leq W \leq 68kg : 20cm$</follow>	

Note 5-1 criteria : Normal display image with no obvious non-uniformity and no line defect.

Note 5-2 Evaluation should be tested after storage at room temperature for more than two hour

- Note 5-3 At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note 5-4 A certain level of Mura (non-uniformity) of dark / black image will happen several days after high temperature testing (H.T.T.). There is a slowly part recovery over a long time (several months).Such a long exposure time like in H.T.T. will normally not happen in a real application. Therefore the test H.T.T. was introduced to simulate cycles with normal conditions in-between but with the same total exposure time what show a significant reduced Mura. The root cause is related to tension generated due to different amount of shrinking in the stack of layers in the polarizer sheet. The effect is more significant on larger displays like this size. An investigation into alternative polarizer material showed that there is no better alternative currently available.

PRODUCT SPECIFICATION

6. General Precautions

6.1 Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2 Handling

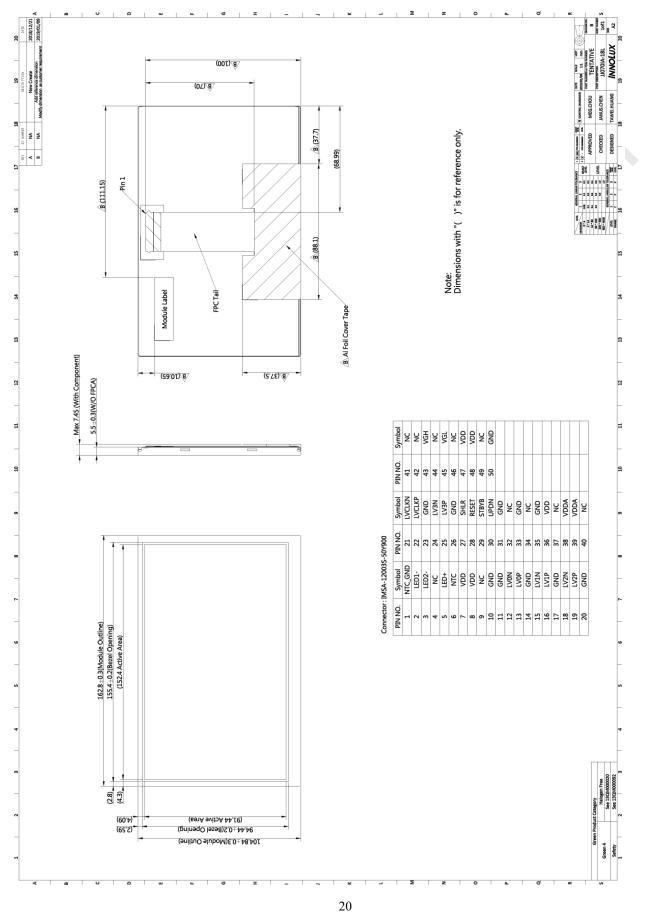
- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
- 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
- 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3 Static Electricity

- 1. Be sure to ground module before turning on power or operating module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

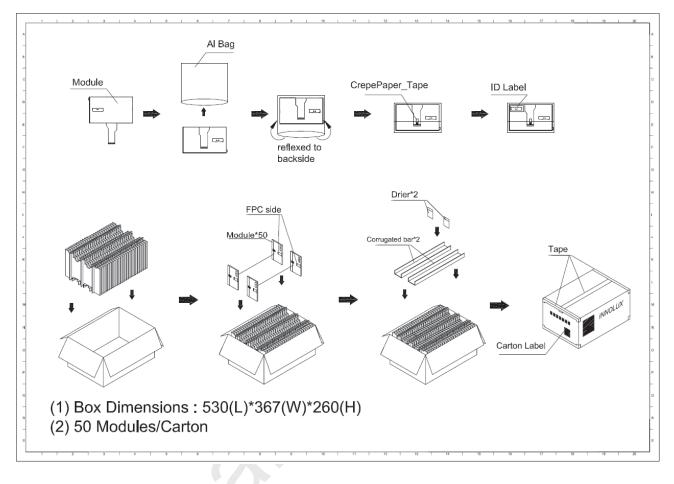
6.4 Storage

- 1. Store the module in a dark room where must keep at 25±10 $^\circ\!C$ and 65%RH or less.
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
- 3. Store the module in an anti-electrostatic container or bag.


6.5 Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

PRODUCT SPECIFICATION


7. Mechanical Drawing

PRODUCT SPECIFICATION

8. Packing Drawing

